Statistical Modes
Fair Forge supports two statistical approaches for computing metrics: Frequentist and Bayesian. This is particularly relevant for the Toxicity metric.Overview
| Mode | Returns | Best For |
|---|---|---|
| Frequentist | Point estimates (single values) | Quick analysis, large datasets |
| Bayesian | Full distributions with credible intervals | Uncertainty quantification, small datasets |
Frequentist Mode
The default mode returns simple point estimates.Frequentist Methods
| Method | Description |
|---|---|
distribution_divergence() | Total variation distance |
rate_estimation() | Simple proportion (successes/trials) |
aggregate_metrics() | Weighted sum |
dispersion_metric() | Mean absolute deviation |
When to Use
- Large datasets (>100 samples)
- Quick preliminary analysis
- When point estimates are sufficient
- Production systems where speed matters
Bayesian Mode
Returns full posterior distributions with uncertainty quantification.BayesianMode Parameters
| Parameter | Type | Default | Description |
|---|---|---|---|
mc_samples | int | 5000 | Number of Monte Carlo samples |
ci_level | float | 0.95 | Credible interval level (0-1) |
dirichlet_prior | float | 1.0 | Dirichlet prior concentration |
beta_prior_a | float | 1.0 | Beta distribution alpha parameter |
beta_prior_b | float | 1.0 | Beta distribution beta parameter |
rng_seed | int | None | 42 | Random seed for reproducibility |
Bayesian Output Structure
When to Use
- Small datasets (fewer than 100 samples)
- When uncertainty quantification is important
- Research and scientific applications
- When making decisions based on confidence levels
Comparison Example
Understanding the Difference
The key difference is in how they handle uncertainty:- Small Sample (n=10)
- Large Sample (n=1000)
With small samples, Frequentist estimates can be misleading:
- Frequentist: “DIDT = 0.50” (point estimate, no uncertainty)
- Bayesian: “DIDT = 0.35 [0.10, 0.65]” (wide interval shows uncertainty)
Priors in Bayesian Mode
Dirichlet Prior
Used for distribution comparisons (e.g., group representation):Beta Prior
Used for rate estimation (e.g., toxicity rates):Custom Statistical Modes
You can create custom statistical modes by implementing theStatisticalMode interface: